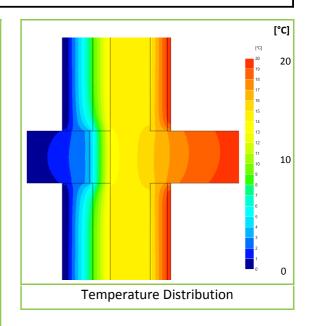

Certificate No: C4TM – 001495 vs. 0 Issued: Thursday 30 May 2013


Issued to: Jean-Marc Bouvier
Nudura

NUDURA Corporation International Sales & Field Support

Tel: Mob +44 (0) 7766 118711 Email: jmb@nudura.com www.nudura.com

Reference:	E8	Balcony, wi	thin dwelling, with thermal break + 102mm extra EPS	
Description: ICF Wall, Balcony_TBreak				
	Thern	nal Break:	80mm in line with external insulation, equivalent λ = 0.261 W/K.m	
full construction)	Balco	ny:	Cast-in-situ and continuous with internal floor	
Specification: (see detail below for	Insula	tion:	2x 67mm layers of EPS + exterior extra 25mm , λ = 0.036	
General Constructio	n Main/	Load Beaing::	152mm (nominal) Dense Concrete Core, λ<=2.00	

Linear Thermal Transmittance W/m.K		
Ψ=	0.321	

Temperature Factor ³ for Humidity and			
Mould			
<i>f</i> =	0.867		

Calculation Prepared By: Matthew Wright MA Physics (Oxon) PGCE

Notes: Calculation based upon internal heat loss areas, applicable in UK Building Regulations and SAP calculations.

The Schöck Isokorb concrete/concrete balcony thermal break has been used. Representative worst case fixing chosen, implying not to exceed 2.25m / maximum penetrating steel bars K60-CV35 fixing pattern, fire rating F90. Refer to Schöck Isokorb Technical Manual, equivalent conductivity tables.

- 1. Ψ and f are only valid for the detail drawn and described above.
- 2. The Ψ and f quoted are considered valid for U-value(s) Wall<= 0,145 W/m².K, (allowance of +/- 20%, following the present guidance from B. Anderson, BRE, correspondence dated 24/02/2012, for the UK market). The use of different claddings may affect the U-value slightly, but will have no material impact on the calculated values used here, in this case.
- 3. In dwellings, UK regulations stipulate that a temperature factor *f* that is >0.75 would avoid the risk of mould growth. For other nations, jurisdictions and climates, please consult the local building regulations that apply for avoiding mould and condensation. (For example, typical requirements may be: Netherlands: 0.65; Switzerland: 0.75; Belgium: 0.7; Germany: 0.7; Finland: 0.87. *French, German and other standards often do not indicate a single number for acceptable risk, but are dependent on circumstances*.)
- 4. Calculations have been performed in accordance with:
 - EN ISO 10211_2007 (British Standards)
 - IP 1/06 & BR497 (BRE Press)

and with reference to the following publications:

EN ISO 6946 (British Standards)

BR443 (BRE Press)

Tel / Fax: +44 (0) 1256 892211 email: info@C4Ci.eu